DIFFERENTIAL TOPOLOGY MID-TERM EXAM, 2014

Q.1 Let \mathbb{S}^1 be the unit circle in \mathbb{R}^2 . Prove that $\mathbb{S}^1 \times \mathbb{S}^1$ is a manifold.

Ans. Let $g : \mathbb{R}^2 \to \mathbb{R}$ be the map $g(x, y) = x^2 + y^2$. Here $dg_{(x,y)} = 2xdx + 2ydy$. Then, $dg_{(x,y)}$ is surjective for all $(x, y) \neq \{(0, 0)\}$. Then, 1 is a regular value of g and so by Preimage Theorem, $\mathbb{S}^1 = g^{-1}(1)$ is a submanifold of \mathbb{R}^2 , hence is a manifold. Thus, $\mathbb{S}^1 \times \mathbb{S}^1$ is also a manifold.

Q.2 If X is compact and Y is connected. Show that every submersion $f: X \to Y$ is surjective.

Ans. By Local Submersion Theorem, we can observe that if $y \in f(X)$, then there exists a neighbourhood V around y, such that $V \subset f(X)$. Then, f(X) is an open subset of Y. Again, as f(X) is the image of a compact set, is compact too. As Y is a Hausdorff space and f(X) is a compact subset of Y, so f(X) is a closed subset of Y. This gives f(X) is both open and closed subset of Y and Y is connected, so f(X) = Y. Thus, f is surjective.

Q.3a Let

$$f: \mathbb{S}^1 \to \mathbb{S}^1$$
$$f(x) = -x$$

be the antipodal map. Show that it is homotopic to the identity.

Ans. Let $F(s,t): \mathbb{S}^1 \times [0,1] \to \mathbb{S}^1$ be a map defined by $F(s,t) = s.e^{\pi i t}$. This is a homotopy from the identity to the antipodal map.

Q.3b Show that if k is odd the same is true for the antipodal map $\mathbb{S}^k \to \mathbb{S}^k$.

Ans. We can write a point of \mathbb{S}^k as (z_1, \dots, z_n) where 2n = k+1 and each z_i is a complex number. Then we take the homotopy $\mathbb{S}^k \times [0, 1] \to \mathbb{S}^k$ defined by $F((z_1, \dots, z_n), t) = (z_1, \dots, z_n) e^{\pi i t}$. This is a homotopy from the identity map to the antipodal map.

Q.4 Show that $[0,1] \times [0,1]$ is not a manifold with boundary.

Ans. Let $X = [0, 1] \times [0, 1]$. Take the point $(0, 0) \in X$. Take a neighbouhood U of (0, 0) in X. Now, if X is a manifold with boundary, then U is diffeomorphic to an open set V of $\mathbb{H}^2 = \{(x, y) : y \ge 0\}$. Let the diffeomorphism be f.

If f sends (0,0) to an interior point x of \mathbb{H}^2 , then we shall get an open ball B as a nbhd of x and a simply-connected open set $U_1 \subset f^{-1}(B)$ around (0,0) such that U_1 is mapped into B under f. But, as f sends (0,0) to x, $f: U_1 \to f(U_1)$ is not a homeomorphism (as if we delete (0,0) and x from both sides, we shall get simply-connected set on one side and not simply-connected set on the other side). So, (0,0) can't be sent to an interior point of \mathbb{H}^2 under f. The same argument shows that under any diffeomorphism $f: U \to V$, the boundary goes into the boundary of \mathbb{H}^2 . As $f: U \to V$ is a smooth map, there is an open set $U_2 \subset \mathbb{R}^2$ containing U and a smooth map $F: U_2 \to \mathbb{R}^2$ so that the restriction of F to U is f. As f is a diffeomorphism, there is a smooth map $g: V \to U$, so there is an open set V_2 in \mathbb{R}^2 containing V and a smooth map $G: V_2 \to \mathbb{R}^2$ and the restriction of G to V is g. Also, $G \circ F$ on U is the identity.

The tangent space of U_2 at (0,0) has two linearly independent vectors $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$. As $G \circ F$ is identity on U, $d(G \circ F)$ is identity on these two vectors, so the image of these vectors under dF is again linearly independent.

But, as F sends the boundary of U to the boundary of \mathbb{H}^2 , thus the image of $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ under dF is linearly dependent, which is a contradiction to the fact proven in the last paragraph. Therefore, $X = [0, 1] \times [0, 1]$ is not a manifold with boundary.

Q.5 Show that the Brouwer Fixed Point Theorem is false for the open ball of radius a > 0 $\mathbb{B}^{k} = \{x \in \mathbb{R}^{k} | \parallel x \parallel < a\}.$

Ans. Consider the following map $g: \mathbb{B}^k \to \mathbb{R}^k$ by

$$g(x) = 2/3.\{x + (a/2, 0, \cdots, 0)\}.$$

Here

 $\| 2/3.\{x + (a/2, 0, \cdots, 0)\} \| \le 2/3.\{\| x \| + a/2\} < 2/3.(a + a/2) = a.$

Therefore, the image of g is in \mathbb{B}^k . Again, g is fixed point free as g(x) = x implies $x = (a, 0, \dots, 0)$.